Multiple gene expression profile alignment for microarray time-series data clustering
نویسندگان
چکیده
منابع مشابه
Multiple gene expression profile alignment for microarray time-series data clustering
MOTIVATION Clustering gene expression data given in terms of time-series is a challenging problem that imposes its own particular constraints. Traditional clustering methods based on conventional similarity measures are not always suitable for clustering time-series data. A few methods have been proposed recently for clustering microarray time-series, which take the temporal dimension of the da...
متن کاملMicroarray Time-Series Data Clustering via Multiple Alignment of Gene Expression Profiles
Genes with similar expression profiles are expected to be functionally related or co-regulated. In this direction, clustering microarray time-series data via pairwise alignment of piece-wise linear profiles has been recently introduced. We propose a k-means clustering approach based on a multiple alignment of natural cubic spline representations of gene expression profiles. The multiple alignme...
متن کاملClustering Algorithms for Time Series Gene Expression in Microarray Data
illustrations, 75 numbered references. Clustering techniques are important for gene expression data analysis. However, efficient computational algorithms for clustering time-series data are still lacking. This work documents two improvements on an existing profile-based greedy algorithm for short time-series data; the first one is implementation of a scaling method on the pre-processing of the ...
متن کاملA New Profile Alignment Method for Clustering Gene Expression Data
Abstract. We focus on clustering gene expression temporal profiles, and propose a novel, simple algorithm that is powerful enough to find an efficient distribution of genes over clusters. We also introduce a variant of a clustering index that can effectively decide upon the optimal number of clusters for a given dataset. The clustering method is based on a profilealignment approach, which minim...
متن کاملClustering Gene Expression Time Series Data
Efficiently and effectively finding the genes with similar behaviors from microarray data is an important task in bioinformatics community. Co-expression genes have the same behavior or are controlled by the same regulatory mechanisms. Clustering analysis is a very popular technique to group the co-expressed genes into the same cluster. One of the key issues for clustering gene expression time ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2010
ISSN: 1460-2059,1367-4803
DOI: 10.1093/bioinformatics/btq422